Interrelationship between TiO2 nanoparticle size and kind/size of dyes in the mechanism and conversion efficiency of dye sensitized solar cells.

نویسندگان

  • Pooya Tahay
  • Meisam Babapour Gol Afshani
  • Ali Alavi
  • Zahra Parsa
  • Nasser Safari
چکیده

In order to provide a comprehensive investigation of TiO2 nanoparticle size in relation with different dye types in DSSCs, three sizes of TiO2 nanoparticles and two different dye types including a porphyrin dye (T2) and a ruthenium dye (N3) were synthesized. Steady state current-voltage (J-V) characteristics were investigated for the fabricated DSSCs and the results demonstrated that the optimum TiO2 nanoparticle size changed with the dye type. The obtained J-V data were interpreted by cyclic voltammetry, UV-visible absorption spectroscopy, BET measurement, DFT calculation, IPCE measurement and impedance spectroscopy. The results for the N3 dye show that the surface area of the TiO2 nanoparticles is a key factor for the N3 cells, which is restricted by TiO2 pore diameter and surface state traps. In contrast, the density of localized states of the TiO2 film under the LUMO state of the porphyrin dyes is the dominating factor for the performance of the solar cells, which is restricted by the surface area of the TiO2 nanoparticles. These obtained results represent a significant advance in the development of porphyrin, ruthenium and even solid electrolyte DSSCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of azo dye as sensitizer in dye-sensitized solar cells

An azo dye used as photosensitizers in Dye-sensitized solar cells DSSCs. Azo dyes economically superior to organometallic dyes because they are color variation and cheap. The spectrophotometric evaluation of an azo dye in solution and on a TiO2 substrate show that the dye form J-aggregation on the nanostructured TiO2 substrate. Oxidation potential measurements for used azo dyes ensured an energ...

متن کامل

Natural dyes extracted from black carrot and bramble for Dye-Sensitized Solar Cells

Two different natural dyes containing anthocyanin extracted from black carrot and bramble from Iran. Spectrophotometric evaluations of the natural dyes in solution and on a TiO2 substrate were carried out in order to assess changes in the status of the natural dyes. The results show that the natural dyes indicate buthochromic shift on the TiO2 substrates. The chemical adsorption of natural dyes...

متن کامل

Synthesis and Application of Two Organic Dyes Based on Indoline in Dye-Sensitized Solar Cells

In this paper we sensitized two new organic days dye 1 and dye 2 based on thioindigo with phenothiazine as the electron donor group. We used acrylic acid and cyanoacrylic acid as the electron acceptor anchoring group in dye 1 and dye 2 respectively. The proposed dyes were sensitized from phenothiazine as the starting material by standard reactions and characterized by different techniques such ...

متن کامل

Synthesis and Application of Two Organic Dyes for Dye-Sensitized Solar Cells

In the present study, two new organic dyes based on indigo were prepared and used as sensitizers in dye-sensitized solar cells. To this end, indoxyl was utilized as the electron donor and cyanoacrylic acid as the electron acceptor anchoring groups. These dyes together with their corresponding intermediates were purified and characterized by FTIR, 1HNMR, 13CNMR, elemental analysis and UV-Visible...

متن کامل

Investigation of Indigo/thioindigo Tandem Dye-Sensitized Solar Cells

In this paper we used two free-metal organic dyes (dye 1 and dye 2) based on indigo and thioindigo with cyanoacrylic acid as the electron acceptor group. The proposed dyes were sensitized from naphalene as the starting material by standard reactions and characterized by different analytical techniques and UV-Visible spectroscopy after purification. Spectrophotometric measurements of the organic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 19 18  شماره 

صفحات  -

تاریخ انتشار 2017